
138

 }

 class Dog : Animal
 {
 static int _MaxAge = 30;
 string _Type;

 public Dog(string Name, int Age, string Type)
 : base(Name, Age)
 {
 _Type = Type;
 }
 public override void Walk()
 {
 MessageBox.Show("Dog is walking");
 }
 public new void Talk()
 {
 MessageBox.Show(" Dog is barking ");
 }

}

 private void ButCalculate_Click(object sender, EventArgs e)
 {
 Dog x = new Dog("Doi",40,"Sharlot");
 x.Walk();
 x.Talk();

 }

5-2-1- Private Members and protected Members

With inheritance, private members of a base class are not
accessible directly from that class’s derived classes, but these private
base-class members are still inherited. All other base-class members
retain their original member access when they become members of the
derived class (e.g., public members of the base class become public
members of the derived class, and, as we will soon see, protected
members of the base class become protected members of the derived
class). Through these inherited base-class members, the derived class
can manipulate private members of the base class (if these inherited
members provide such functionality in the base class).

Using protected access offers an intermediate level of protection
between public and private access. A base class’s protected members
can be accessed only in that base class or in any classes derived from
that base class.

The use of protected variables allows for a slight increase in
performance, because we avoid incurring the overhead of a method call
to a property’s set or get accessor. However, in most C# applications, in
which user interaction comprises a large part of the execution time, the
optimization offered through the use of protected variables is negligible.

Using protected instance variables creates two major problems:
First, the derived class object does not have to use a property to

set the value of the base-class’s protected data. Therefore, a derived-

139

class object can easily assign an illegal value to the protected data, thus
leaving the object in an inconsistent state.

The second problem with using protected data is that derived-
class methods are more likely to be written to depend on base-class
implementation. In practice, derived classes should depend only on the
base-class services (i.e., non-private methods and properties) and not
on base-class implementation. With protected data in the base class, if
the base-class implementation changes, we may need to modify all
derived classes of that base class. In such a case, the software is said to
be fragile or brittle. The programmer should be able to change the base-
class implementation freely, while still providing the same services to
derived classes.

Derived-class methods normally can refer to public, protected and
internal members of the base class simply by using the member names.
When a derived-class method overrides a base-class member, the base-
class member can be accessed from the derived class by preceding the
base-class member name with keyword base, followed by the dot
operator.

6-3- Structural inheritance
In this section, we use a point-circle hierarchy to discuss the

relationship between a base class and a derived class. We divide our
discussion of the point-circle relationship into several parts. First, we
create class point, which directly inherits from class System.Object and
contains as private data an x-y coordinate pair. Then, we create class
Circle, which directly inherits from class Point. The point-circle
relationship may seem unnatural when we discuss it in the context of a
circle “is a” point. This example teaches what is sometimes called
structural inheritance; the example focuses on the “mechanics” of
inheritance and how a base class and a derived class relate to one
another.

Example6_3_1:
public class Point
 {
 int _x, _y;
 public Point()
 {

 }
 public Point(int X, int Y)
 {
 x = X;
 y = Y;
 }

 public int x
 {
 get { return _x; }
 set { _x = value; }

